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The Nonlinear and Ball Pass Effects of a Ball Bearing on Rotor
Vibration
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A ball bearing is generally assumed as a linear spring in rotor dynamic analysis. In real case.
the force equilibrium of the bearing is changed as the relative position of each ball with respect
to the direction of radial force. So. the stiffness of the bearing is also changed and is a function
of time and position. In this study. the nonlinear characteristics of a ball bearing are considered
in analyzing the vibration response of a rotating shaft due to an unbalance force. A finite
element method is used to analyze the vibration characteristics of a rotor-bearing system and a
direct numerical integration is performed to calculate the transient response of the rotor system.
The responses are converted to the frequency domain and the effects of the parametric excitation
due to a ball bearing are examined. The test rig for the investigation of the effect of a bali
bearing on the rotor vibration is set up and the results are compared with those of numerical
calculation. The calculation results show that the amplitudes of the nonlinear model are larger
than those of the linear one. The frequencies of the calculations can be matched to the measured

frequencies.
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Qr)
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ture center {2} . Inner raceway cross-section displace-
D : Ball diameter ment vector, {7 = (1t 1ty)
D . Pitch diameter of a bearing a - Nominal contact angle
{7} . Force vector a : Changed contact angle
(£} : Bearing load vector. {F}7={F: ., O : Contact deformation
Fv Foo M. M) {6} . Bearing displacement vector, {§}7 =
K . Load-deformation factor {Ox Oy Oz Yo 72l
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outer raceway curvature center w » Angular velocity of shaft
] . Number of rolling element Wn . Orbital velocity of rolling element
[(M]..G].IK] : Mass, gyroscopic, stiffness Subscripts
matrix B . Bearing
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. Rolling element index
1. Introduction

For the analysis of rotor systems supported by
ball bearings, it is generally sufficient to model
the bearing as a linear spring. However, in some
modern engineering applications of ball bearings.
such as high-speed gas turbines, machine tools.
and gyroscopes, the nonlinear characteristics of
ball bearings have to be considered carefully to
predict vibration characteristics of a rotor-bear-
ing system more accurately. Bearings play an
important role in the dynamic behavior of a rotor
system. They influence the occurrence of critical
speeds. the onset of a dynamic instability, and the
magnitude of vibrations of the rotor in response
to external forces. Also, bearings may be a source
of the external forces for the rotor.

The equation of force equilibrium in a ball
bearing is nonlinear and statically indeterminate.
So, the !oad-deformation relationships at the
contact point between a rolling element and the
raceway have to be considered in the analysis of
the load distribution on each ball. This set of
nonlinear equations has to be solved by numeri-
cal methods, such as Newton-Raphson proce-
dure. In early 1960’s, a model to describe the
behavior of a ball bearing in a quite general sense
is published by A. B. Jones(1960).
introduced “race control hypothesis™ and anal-

Jones

yzed quasi-static characteristics of a ball bearing
considering the centrifugal force and the gyros-
copic moment yielded by the orbital motion of a
rolling element. The flexibility of a shaft and a
support structure is also considered and the influ-
ence coefficient approach is used. Harris(1991)
predicted the friction force and the skidding of a
ball based on elasto-hydrodynamic lubrication
(EHL) theory and analyzed the motion of the
ball. Gupta (1984) derived the dynamic equations
of an angular contact ball bearing on the condi-
tion of EHL. and analyzed the transient motion
of a ball bearing.

Because balls in the bearing are arranged di-
scretely. the relative position of each ball 1s chan-
ging periodically with respect to the direction of

the radial load as the shaft rotates. This ball
passage through the load line makes the ball
bearing stiffness change periodically. as well. This
change generates the parametric excitation on a
shaft and may be the cause of subharmonic reso-
nance.

In this study, the vibration response due to an
unbalance force of a rotating shaft supported by
ball bearings is analyzed considering the non-
linear and periodically changing stiffness charac-
teristics of the ball bearing. The bearing stiffness
is considered as a nonlinear function of displace-
ment and time in the dynamic equation of the
system. The finite element method is used to
analyze the rotor-bearing system. The ball bear-
ing stiffness is calculated at each time step con-
sidering the variation of internal load distribution
due to the ball passage. A direct numerical inte-
gration is performed to calculate the unbalance
response of the rotor system. The responses are
converted to the frequency domain and the effects
of the periodic excitation due to the discretely
arranged balls are examined. A test rig for the
investigation of the effect of a ball bearing on the
rotor vibration is set up and the results are
compared with those of the numerical calculation.

2. Modeling of a Ball Bearing

Generally. a ball bearing can be modeled such
that the outer ring is fixed and the inner ring is
displaced from its center by external loads. The
force equilibrium contains external loads and
contact forces between balls and the inner rac-
eway. Basic ball bearing geometry is shown in
Fig. 1.

To simplify the analysis, the following major
assumptions are applied (deMul and Vree, 1989).

The structural deformation of the inner and the
outer ring of a bearing can be neglected, and only
local elastic deformations between the balls and
the raceway are considered.

Compared with normal reaction forces between
balls and the raceway, the reaction force and the
friction between the cage and balls are quite
negligible.

The following coordinate systems shown in
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L
reference point O x

Fig. 1 Ball bearing cross-section geometry.

By

Fig. 2 Bearing Cartesian and cylindrical coordinate
systems.

Fig. 2 are chosen for the analysis. A right-handed
Cartesian coordinate system x-y-z with the ori-
gin O on the inner ring center line defines the
direction of an external load vector {F} and a
bearing displacement vector {§}. x-axis falls on
the bearing rotational axis. A cylindrical coordi-
nate system »-@-x with the same origin defines
the inner raceway cross-section displacement {}
and the contact force vector {} at the angular
position @ of each ball. The center of inner
raceway groove curvature is chosen as the inner
ring cross-section reference point Oi0; (rp. Xp)-

. Al . .
Oi
inner raceway
curvature center,
displaced lix| Ur
0i
ball center, inner raceway
?n.d-l“m curvature center,
condition initial
A2
& ball center, initial
a condition

L fixed outer raceway
Qo curvature center

Fig. 3 Positions and displacements of groove cen-
ters and ball center in the cross-section i.

If a bearing displacement vector {§} is given,
the inner raceway cross-section displacement {4}
can be calculated assuming that the displacement
{6} and {z} are very small. They can be related
linearly as follows ;

{u}=[RO]-{5} (1
with
ol 0 0 ¥p COS @
[R‘D]*[o —sin¢ cos ¢ —xpsin ¢
b Sin ¢
—Xp COS @ ] 2)

The displacement {z} changes the distance
between the centers of the inner and the outer
raceway curvature and also the magnitude of the
contact angle as shown in Fig. 3. Al and A2
denote the positions of the displaced inner rac-
eway curvature center with respective to the fixed
outer raceway curvature center, which is given by

{Al};{uﬁls sin a/} 3)

Al lur+lreosa

where /; denotes the initial distance between the

centers as
le=7ri+ro—D (4
The changed contact angle ¢’ is calculated from
A
s £31 5
tan &' =77~ (5)

The change of the distance between the centers
means the contact compression of the ball, which
is as follows:
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Se=V A+ A} —Is (6)

where §. denotes the contact deformation.
Classical Herztian contact theory is applied to

the analysis of the local deformation between
balls and raceway and the ball contact load @ is
calculated from

R=K5" (N
where K denotes the load-deformation factor.

The contact force vector is applied along the
contact line, which is given by

(Q)=| " ¥sne} ®)
—Qcos

Using the transformation matrix (2), the con-
tact force {Q} is transformed to an equivalent
force at the inner ring reference point, and then
the sum of the equivalent forces of all balls and
the external bearing load { £} are in force equilib-
rium as follos:

(F)+ 3} [RO],T-(Q),=(0) ©)

where index j means the j-th ball.

In practice, the bearing displacements have to
be calculated for a given load {F}. As the set of
Eq. (9) is nonlinear for the unknown displace-
ment vector {8}, This equation has to be solved
iteratively.

Newton-Raphson procedure is

applied as follows:

M=

(F)+ £[RO1 Q)+ 2/ (8),+{40)=(0}

(10)

i

1

where J(8),. is the jacobian matrix at the ;j-th
rolling element and {48} is the change of a solu-
tion vector {§} for the next step in the iteration.

Finally, the Jacobian matrix represents the
bearing stiffness matrix,

AF - S

(A5 --27. (n

3. Modeling of a Rotor-Bearing
System

For the analysis of rotor vibration, transfer
matrix method (TMM) or finite element method
(FEM) is generally used. In this paper, FEM is

used considering gyroscopic effect, axial force and
shear effect. (Nelson, 1980; Ozguven and Ozkon,
1984) )

In the analysis of a rotor system supported by
ball bearings, these bearings are modeled as linear
springs. So, the finite element equation of a typi-
cal rotor-bearing system can be written as

[(MUX} - w[GUXYH{[Ks] + [KIHX )} ={/}
(12)

where the stiffness matrices [ K] of a ball bearing
are defined as follows:

:I:Kyy K\’Z]
lateral sz Kz,z
oFy oFy-
_| 99 aaf (13)
oF: oF:

06 05 -
K vOy A’ yOz
[KB] arzgular:|: e e :l

7@20,\! [{Bzez
oM, oM,
dyy 07z
oM. oM.
oy 072

[ K]

(14)

However, the spring characteristics of a ball
bearing are basically nonlinear. And the internal
load distribution on the balls varies according to
the relative position of each ball with respect to
the radial load line(see Fig. 4). So, the bearing
stiffness varies periodically. This effect may cause
parametric excitations for a rotor. The stiffness
variation due to the ball passage through the load
line has the frequency as follows:

Wex=N* Wnm (15)
where n denotes the number of balls and @,

denotes the ball orbiting speed.
If the slip of the ball motion on the raceway is

Fig. 4

load distribution of abll bearing.
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neglected, m is given by (Harris, 1991)

(16)

where ¢, is the pitch diameter of a bearing and D
is a ball diameter.

So, the reaction forces at the bearing have to be
included as a nonlinear function of displacement
and time in the equation to analyze the system
more accurately. The equations of motion can be
rewritten as

(MUK} =0l GHX+ KX
={L}—{/z(X. 1)} (17)

where {f4} represents the bearing reaction force
vector.

4. Test Rig

The test rig set up for the investigation of the
effects of the nonlinear and periodically varied
stiffness of a ball bearing on the rotor vibration is

Table 1 Geometry of a 6204 deep groove ball bearing.

Pitch diameter 33.5 mm

Ball diameter 7.938
mm

Inner raceway groove radius 4.01 mm

Outer raceway groove radius 4.20 mm

Ball number 8
accelerometer

920 /

!
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shown in Fig. 5. An eccentric mass is located on
the rigid disk in the middle of the shaft and the
rotating speed of the shaft is 3600 rpm. The deep
groove ball bearing, type 6204, is used. of which
the basic geometry is given in Table 1. To isolate
the motor vibration a flexible coupling is applied
effectively.

The acceleration of a bearing housing is mea-
sured by an accelerometer and the responses are
converted to the frequency domain using an FFT
analyzer.

5. Results

The load-displacement and the stiffness-dis-
placement relationships for the test bearing are
calculated and the results are shown in Fig. 6.
The bearing load increases progressively and the

i mmme- liffNBSS bearing load
5000 *11000
4000 [~ BOO "
z =
o SR 3
g 3000 [ " 600 2
2 : E:
€ 2000 [ 400 3
2 2
1000 [~ 200
0 i i 0
0.0 20 4.0 6.0 8.0

displacement [mm]
Fig. 6 Load-displacement and stiffness-displace-
ment relationships for a ball bearing, type
6204.

flexible coupling

$26

¥ 9150

i: |

frequency
analyzer

||

input data

i R pry

(g 240 — |

motor

L ]

Young's modulus, E : 210 GN/m?
density, p : 7850 Kg/nd
bearing © 6204 bearing

Fig. 5 Test rig.
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g. 7 Stiffness variation for a ball bearing, type
6204, under a static load.

stiffness increases degressively with the displace-
ments. It is based on the nonlinear characteristics
of the contact deformation between balls and the
raceway.

The effect of the ball passage on the bearing
stiffness under the static load is shown in Fig. 7.
The anisotropy of the bearing stiffness is due the
difference of the static loads. As the angular
position ¢, of a ball with respect to the load line
is changed, the bearing stiffness varies periodi-
cally. The amplitude of the stiffness variation is
relatively small, but would be amplified by the
dynamic load due to an unbalance of the rotor.

A finite element model of the test shaft is shown
in Fig. 8. Two different models for a ball bearing
are applied. They are the linear spring and the
nonlinear spring models, which are given in Egs.
(12) and (Bozzi and Anderggent, 1982) respec-
tively. And the direct numerical integration
method using implicit -family algorithm(7) is
applied to solve the equations. The step size of the
time is 0.083 millisecond and the is 0.9. The
results of the calculations are shown in Fig. 9 and

[

K

N NN\

Fig. 8 FEM model of the test rotor.

Table 2. The center of the orbit for the nonlinear
spring model is located nearer to the initial bear-
ing center than that for the linear model and the
amplitude of the orbit for the nonlinear model is
larger than that for the linear model. The reason
is that the bearing reaction force and the stiffness
increase nonlinearly with the bearing displace-
ments. While the orbit for the linear spring model
exhibits only a harmonic response, the orbit for
the nonlinear spring model include some super-
a harmonic
response. These vibrations of the rotor are trans-

harmonic responses as well as

formed into the frequency domain, as shown in
Fig. 10, for the investigation of the superharmonic
frequencies. The frequencies showing the peak
amplitudes include the rotating frequency, the
ball passage frequencies and the sums and the
differences of these frequencies.

For the verification of the calculated results the
accelerations of the bearing housing, which sup-
port the rotating shaft at the speed of 3600 rpm,
are measured. Fig. |!(a) shows the power spec-
trum of the measured acceleration and Fig. 11 (b)
the frequency spectrum of the calculated reaction
force. The peak values appear at 60.0, 123.1, 183.
1, 243.1, 246.1, 303.1, 306.1, 366.2, 369.1, 426.3,
429.2. 486.3 and 489.3Hz. The frequency 60.0Hz is
the rotating frequency and the frequencies at 183.
1, 366.2Hz are due to the excitation frequencies
mownt, 2non—2w0, noxt2w. 2non—w 3
Nwm—3w, 200n+ @ 200n—2w 2nont+2w
and 3nw.— @ between the excitation frequencies
by ball passages and rotating speed of shaft are
the frequencies at 123.1, 243.1, 246.1, 303.1, 306.1,
369.1, 426.3, 429.2, 486.3 and 489.3Hz, respective-
ly. These frequencies match very well to the fre-
quencies in the power spectrum of the measured
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Fig. 9 Orbits of the shaft due to the unbalunce force.

Table 2. Numerical results of the two-type models

Vertical Amplitude

displacement | of orbit

Linear spring model -1.3145E-3 | 0.923E-5
Nonlinear spring model | -5.4491E-4 | 0.282E-4

acceleration. The calculated pick values of some
high frequencies are smaller than experimental
results. It is due to the numerical damping of the
numerical integration. The twice frequency of the
rotating speed is due to a misalignment or the
runout error of a shaft, in general. The frequency
of 2¢ does not exist in Fig. 11 (b) because those
effects are not considered on this study.

6. Conclusions

The vibration response due to an unbalance
force of a rotating shaft supported by ball bear-
ings is analyzed considering the nonlinear and
periodically varied stiffness.

The stiffness of the ball bearing is calculated
with respect to the nonlinear contact deformation
and the periodic load distributions on the balls
and a finite element method is applied for the
rotor dynamic analysis. The periodically varying
stiffness is modeled as an external excitation for
the rotor-bearing system and the orbital motions
of the bearing and the rotor are integrated directly
using a p-family algorithm.
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Fig. 10 Frequency spectrums of the numerical results
(shaft displacements of the bearing position).

The calculated results show that the eccentricity
of the orbit for the nonlinear spring model is
smaller than that for the linear one and that the
amplitude of the orbit for the nonlinear spring
model is larger than that for the linear one.

The frequency spectrum of the calculated orbit
for the nonlinear model exhibits the peak values
at various frequencies including the rotating fre-
quency g, the excitation frequency nw, by ball
passages and the sums and the differences of these
frequencies. The power spectrum of the bearing
housing acceleration for test rig shows the peak
values at all of these frequencies.

It can be concluded that the nonlinear and
periodic variation of the stiffness of a ball bearing
would be very useful to investigate and predict the
harmonic and superharmonic responses of the
rotor supported by ball bearings, even though the
amplitude of the variation is small enough.
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