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The Nonl inear and Ball Pass Effects of  a Ball Bearing on Rotor 
Vibration 

D. C. Han*,  S. H. Choi**, Y. H. Lee** and K. H. Kim*** 
(Received June 18, 1997) 

A ball bearing is generally assumed as a l inear spring in rotor dynamic analysis. In real case, 

the force equi l ibr ium of  the bearing is changed as the relative posit ion of  each ball with respect 

to the direction of  radial force. So, the stiffness o f  the bearing is also changed and i:s a function 

of  time and position. In this study, the nonl inear  characteristics of  a ball bearing are considered 

in analyzing the vibrat ion response of  a rotat ing sha[t due to an unbalance force. A finite 

element method is used to analyze the vibrat ion characteristics of  a ro tor -bear ing  system and a 

direct numerical  integration is performed to calculate the transient response of  the rotor system. 

The responses tire converted to the frequency domain  and the effects of  the parametric excitation 

due to a ball bearing are examined. The test rig for the investigation of  the effect of  a ball 

bearing on the rotor vibrat ion is set up and the results are compared  with those of  numerical  

calculat ion.  The calculat ion results show that the ampli tudes of  the nonl inear  model  are larger 

than those of  the linear one. The fiequencies of  the calculat ions can be matched to the measured 

lYeq uencies. 
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Nomenclature  

:/tL,A2 : T h e  posit ion of  the displaced inner r 

raceway curvature center with respec- 

tive to the fixed outer raceway curva- {N~} 

ture center {it} 

D : Ball diameter  

D,~ : Pitch diameter  of  a bearing a 

{f} : Force vector a '  

{ / : I  : B e a r i n g  load vector, {F} r {t::..<, & 

s+, F .  M,,, M~} {3} 
K : Load-de fo rma t ion  factor 

[~ : D i s t a n c e  between the inner and the {60} 

outer raceway curvature center co 

: Number  of  roll ing element co.~ 

gyroscopic ,  s t i f fness  
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: Ball contact  load vector, { Q } r _  (Ox, 
cOr) 

: Radius of  curvature of  raceway 

groove 

: Transformat ion  matrix 

: Inner raceway cross-sect ion displace- 

ment vector, {z~}T= (It.v, u,.) 

�9 Nominal  contact  angle 

: Changed contact  angle 

: Contact  deformation 

: B e a r i n g  displacement vector, {•}r 

{ & . & . a .  >,, >} 
: Angular  position 

: Angular  velocity of  shaft 

: Orbital  velocity of  roll ing element 

Subscripts 
/3 : Bearing 

i : Inner raceway 

o : Outer  raceway 

.V,_V,~ : A.', V ,  Z a x e s  
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: Rolling element index 

1. Introduction 

For the analysis of rotor systems supported by 

ball bearings, it is generally sufficient to model 

the bearing as a linear spring. However, in some 

modern engineering applications of ball bearings, 

such as high-speed gas turbines, machine tools, 

and gyroscopes, the nonlinear characteristics of 

ball bearings have to be considered carefully to 

predict vibration characteristics of a rotor-bear- 

ing system more accurately. Bearings play an 

important role in the dynamic behavior of a rotor 

system. They influence the occurrence of critical 

speeds, the onset of a dynamic instability, and the 

magnitude of vibrations of the rotor in response 

to external forces. Also, bearings may be a source 

of the external forces for the rotor. 

The equation of force equilibrium in a ball 

bearing is nonlinear and statically indeterminate. 

So, the 'load-deformation relationships at the 

contact point between a rolling element and the 

raceway have to be considered in the analysis of 

the load distribution on each ball. This set of 

nonlinear equations has to be solved by numeri- 

cal methods~ such as Newton Raphson proce- 

dure. In early 1960's, a model to describe the 

behavior of a ball bearing in a quite general sense 

is publi,;hed by A. B. Jones(1960). Jones 

introduced "race control hypothesis" and anal- 

yzed quasi-static characteristics of a ball bearing 

considering the centrifugal force and the gyros- 

copic moment yielded by the orbital motion of a 

rolling element. The flexibility of a shaft and a 

support structure is also considered and the influ- 

ence coefficient approach is used. Harris(1991) 

predicted the friction tbrce and the skidding of a 

ball based on elasto hydrodynamic lubrication 

(EHL) theory and analyzed the motion of the 

ball. Gupta(1984) derived the dynamic equations 

of an angular contact ball bearing on the condi- 

tion of EHL, and analyzed the transient motion 

of a ball bearing. 

Because balls in the bearing are arranged di- 

scretely, lhe relative position of each ball is chan- 

ging periodically with respect to the direction of 

the radial load as the shaft rotates. This ball 

passage through the load line makes the ball 

bearing stiffness change periodically, as well. This 

change generates the parametric excitation on a 

shaft and may be the cause of subharmonic reso- 

nance. 

in this study, the vibration response clue to an 

unbahmce force of a rotating shaft supported by 

ball bearings is analyzed considering the non- 

linear and periodically changing stiffness charac- 

teristics of the ball bearing. The bearing stiffness 

is considered as a nonlinear function of displace- 

ment and time in the dynamic equation of the 

system. The finite element method is used to 

analyze the rotor-bearing system. The ball bear- 

ing stiffness is calculated at each time step con- 

sidering the variation of internal load distribution 

due to the ball passage. A direct numerical inte- 

gration is performed to calculate the unbalance 

response of the rotor system. The responses are 

converted to the frequency domain and ~he effects 

of the periodic excitation due to the discretely 

arranged balls are examined. A test rig for the 

investigation of the effect of a ball bearing on the 

rotor vibration is set up and the results are 

compared with those of the numerical calculation. 

2. Model ing of a Ball Bearing 

Generally, a ball bearing can be modeled such 

that the outer ring is fixed and the inner ring is 

displaced fiom its center by external loads. The 

force equilibrium contains external loads and 

contact forces between balls and the inner rac- 

eway. Basic ball bearing geometry is shown in 

Fig. 1. 

To simplify the analysis, the following major 

assumptions are applied (deMul and Vree, 1989). 

The structural deformation of the inner and the 

outer ring of a bearing can be neglected, and only 

local elastic: deformations between the balls and 

the raceway are considered. 

Compared with normal reaction forces between 

balls and the raceway, the reaction force and the 

friction between the cage and balls are quite 

negligible. 

The following coordinate systems shown in 
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Ball bearing cross-section geometry. 
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Bearing Cartesian and cylindrical coordinate 
systems. 

Fig. 2 are chosen for the analysis. A right-handed 

Cartesian coordinate system x - y - z  with the ori- 

gin O on the inner ring center line defines the 

direction of an external load vector {F} and a 

bearing displacement vector {#}. x-axis falls on 

the bearing rotational axis. A cylindrical coordi- 

nate system r - O - x  with the same origin defines 

the inner raceway cross-section displacement {z/} 

and the contact force vector {Q} at the angular 

position ~ of each ball. The center of inner 

raceway groove curvature is chosen as the inner 

ring cross-section reference point OiOi (rp, x~). 

" - I t  Oi' 
J k inner raceway / ' ~  

curvature c e n t e r , /  "7" 
displaced / ~ u x  ! ur 

Oi ball center, / ~ O ~ r  racewa 
ol~r.~ting - " / /  c~r(u~ cenYter, , ,  c ~  ~,t,,, 

I '~-~ / / %  center, ~,t~" 

~ "  fixed outer raceway 
Oo curvature center 

Fig. 3 Positions and displacements of groove cen- 
ters and ball center in the cross-section i. 

If a bearing displacement vector {c~} is given, 

the inner raceway cross-section displacement {u} 

can be calculated assuming that the displacement 

{~} and {u} are very small. They can be related 

linearly as follows; 

{u}= ER~01 .{~} 

with 

(1) 

[1 0 0 r~ cos r ERAS] L 0 - s i n  ~b cos q5 - . rp  sin ~b 

~'p s in ~ (2) 
J -- Xp COS 

The displacement {u} changes the distance 

between the centers of the inner and the outer 

raceway curvature and also the magnitude of the 

contact angle as shown in Fig. 3. AI and A2 

denote the positions of the displaced inner rac- 

eway curvature center with respective to the fixed 

outer raceway curvature center, which is given by 

( /A~T - -  [B COS IQ~') 

where [8 denotes the initial distance between the 

centers as 

[ 8 - -  r ,  + ro  - -  D (4) 

The changed contact angle a '  is calculated from 

tan a ' = ~ -  2 (5) 

The change of the distance between the centers 

means the contact compression of the ball, which 

is as follows: 



The Nonlinear and Ball Pass Effects o f  a Ball Bearing on Rotor Vibration 399 

c-VAt + A~- l~ (6) 

where 3~ denotes the contact deformation. 

Classical Herztian contact theory is applied to 

the analysis of the local deformation between 

balls and raceway and the ball contact load Q is 

calculated fiom 

Q = K3~ -~ (7) 

where K denotes the load-deformation faclor. 

The contact force vector is applied along the 

contact line, which is given by 

{ Q } = { -  O sin a '  (8) 
- Q cos ~ ' ,  

Using the transformation matrix (2), the con- 
tact force {Q} is transformed to an equivalent 

force at the inner ring reference point, and then 

the sum of the equivalent forces of all balls and 

the external bearing load {F} are in force equilib- 

rium as Ibllos: 

{F} + ~, [RO]  f .  { O i l =  {0} (9) 
J t 

where index j means the j - th  ball. 

In practice, the bearing displacements have to 

be calculated for a given load {F}. As the set of 

Eq. (9) is nonlinear for the unknown displace- 

ment vector {3}, This equation has to be solved 

iteratively. N e w t o n - R a p h s o n  procedure  is 

applied as follows: 

{F}+ i~ I t ? e l f ' {  Q}J+ ~ , ] ( 3 ) j . { d 3 } = { O }  
o--1 j--1 

(lo) 

where J ( 3 ) j ,  is the jacobian matrix at the j - t h  

rolling element and {/_/3} is the change of a solu- 

tion vector {3} for the next step in the iteration. 

Finally, the Jacobian matrix represents the 

bearing stiffness matrix, 

{F}I ~ , J (3>~  (11) 

3. Modeling of a Rotor-Bearing 
System 

For the analysis of rotor vibration, transfer 

matrix method(TMM) or finite element method 

(FEM) is generally used. In this paper, FEM is 

used considering gyroscopic effect, axial force and 

shear effect. (Nelson, 1980; Ozguven and Ozkon, 

1984) ) 

In the analysis of a rotor system supported by 

ball bearings, these bearings are modeled as linear 

springs. So, the finite element equation of a typi- 

cal rotor-bear ing system can be written as 

[M] {2}- ~ E G~ {X} +{ EA'~I + [K] }{ X}-{/} 
(12) 

where the stiffness matrices IKs I  of a ball bearing 

are defined as fol lows: 

. Kzz  

f 
a g  aFy 
3G &L 

= 3F~ 3F] (13) 

C)3y c73 

- rI~,,Oy dr~oz 1 

SMy 3fl/Iy ] 
c97y ~7~ ] 

= (?Mz ~,M+| (14) 

@:+, 87~ J 

However, the spring characteristics of a ball 

bearing are basically nonlinear. And the internal 

load distribution on the balls varies according to 

the relative position of each ball with respect to 

the radial load line(see Fig. 4). So, the bearing 

stiffness varies periodically. This effect may cause 

parametric excitations for a rotor. The stiffness 

variation due to the ball passage through the load 

line has the frequency as follows: 

(Oex-- H" (l)m ( 1 5 )  

where n denotes the number of balls and Wm 

denotes the ball orbiting speed. 

If the slip of the ball motion on the raceway is 

Fig. 4 load distribution of abll bearing. 
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neglected, m is given by(Harr is ,  1991) 

d,~ - D 
w,~ 2d,~ w (16) 

where d,, is the pitch diameter  of  a bearing and D 

is a ball diameter.  

So, the reaction forces at the bearing have to be 

included as a nonl inear  function of  displacement 

and time in the equat ion to analyze the system 

more accurately. The equat ions of  motion can be 

rewritten as 

EM]{2} o~E(;]{2}+ [K]{x} 
= { L } - - { f B ( X ,  1)} (17) 

where {fB} represents the bearing reaction force 

vector. 

4. Test Rig 

The test rig set up for the investigation of  the 

effects of  the nonl inear  and periodical ly varied 

stiffness of  a ball bearing on the rotor vibrat ion is 

Table 1 Geometry of a 6204 deep groove ball bearing. 

Pitch diameter 

Ball diameter 

Inner raceway groove radius 

Outer raceway groove radius 

Ball number 

33.5 mm 
i 

7 . 9 3 8  

m m  

4.01 mm 

4.20 mm Fig. 6 

shown in Fig. 5. An eccentric mass is located on 

the rigid disk in the middle of  the shaft and the 

rotating speed of  the shaft is 3600 rpm. The deep 

groove ball bearing, type 6204, is used, of  which 

the basic geometry is given in Table  1. To isolate 

the motor  vibrat ion a flexible coupl ing is applied 

effectively. 

The acceleration of  a bearing housing is mea- 

sured by an accelerometer and the responses are 

converted to the frequency domain  using an F F T  

analyzer. 

5. Results  

The load displacement and the stiffness-dis- 

placement  relat ionships for the test bearing are 

calculated and the results are shown in Fig. 6. 

The bearing load increases progressively and the 

5000 

4000 

3000 

2000 

1000 

......... stiffness bearing l oad  

! = , 1000  

600 i 
400 '~ 

2O0 

0 0 
0.0 2.0 4.0 6.0 8.0 

displacement [turn] 

Load displacement and stiffness displace- 
ment relationships for a ball bearing, type 
6204. 

accelerometer 

~26 

240 w-- 

flexible coupling 
/ 

~ ~- motor 

input data 
Young's modulus, E : 210 GN/m 2 
density, p : 7850 Kg/m3 
bearing : 6204 bearing 

Fig. 5 Test rig. 
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Fig. 7 Stiffness variation for a ball bearing, type 

61204, under a static load. 

stiffness increases degressively with the displace- 

ments. It is based on the nonl inear  characteristics 

of the contact deformation between balls and the 

raceway. 

The effect of  the ball passage on the bearing 

stiffness under  the static load is shown in Fig. 7. 

The anisotropy of the bearing stiffness is due the 

difference of  the static loads. As the angular  

posit ion q51 of a ball  with respect to the load line 

is changed, the bearing stiffness varies periodi- 

cally. The ampli tude of  the stiffness variat ion is 

relatively small, but  would be amplified by the 

dynamic load due to an unba lance  of the rotor. 

A finite element model of the test shaft is shown 

in Fig. 8. Two different models for a ball  bearing 

are applied. They are the l inear spring and the 

nonl inear  spring models, which are given in Eqs. 

(12) and (Bozzi and Anderggent,  1982) respec- 

tively. And the direct numerical  integration 

method using implicit  - family algori thm(7) is 

applied to solve the equations.  The step size of the 

time is 0.083 mill isecond and the is 0.9. The 

results of the calculat ions are shown in Fig. 9 and 

I I 

'N 
Fig. 8 FEM model of the test rotor. 

Table  2. The center of  the orbi t  for the nonl inear  

spring model is located nearer to the initial  bear- 

ing center than that for the l inear model and the 

ampli tude of  the orbit  for the nonl inear  model is 

larger than that for the l inear model. "['he reason 

is that the bear ing reaction force and the stiffness 

increase nonl inear ly  with the bearing displace- 

ments. While the orbit  for the l inear spring model 

exhibits only a harmonic  response, the orbit  for 

the nonl inear  spring model include some super- 

ha rmonic  responses as well as a harmonic  

response. These vibrat ions of the rotor are trans- 

formed into the frequency domain,  as shown in 

Fig. 10, for the investigation of the superharmonic  

frequencies. The frequencies showing the peak 

ampli tudes include the rotat ing frequency, the 

ball  passage frequencies and the sums and the 

differences of  these frequencies. 

For  the verification of the calculated results the 

accelerations of  the bearing housing,  which sup- 

port  the rotat ing shaft at the speed of 3600 rpm, 

are measured. Fig. 11 (a) shows the power spec- 

t rum of the measured acceleration and Fig. 11 (b) 

the frequency spectrum of the calculated reaction 

force. The peak values appear at 60.0, I23.1, 183. 

I, 243.1, 246.1, 303.1, 306.1, 366.2, 369.1, 426.3, 

429.2, 486.3 and 489.3Hz. The frequency' 60.0Hz is 

the rotat ing frequency and the frequencies at 183. 

1, 366.2Hz are due to the excitation fi'equencies 

row,,,+_, 2 mom -- 2 w,  nWm + 2 CO, 2 ~Za)m -- W, 3 

nWm--3(.O, 2nCOm+~0, 2nC0m--2W, 2nCOm+209 
and 3nCOm--Co between the excitation fi'equencies 

by ball  passages and rotat ing speed of shaft are 

the frequencies at 123.1,243.1,246.1,303.1,306.1,  

369.t, 426.3, 429.2, 486.3 and 489.3Hz, respective- 

ly. These frequencies match very well to the fre- 

quencies in the power spectrum of the measured 
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Fig. 9 Orbits of the shaft due to the unbalunce force. 

T a b l e  2. Numerical results of the two-type models 

Vertical I Amplitude 
displacement of orbit 

Linear spring model -1.3145E-3 0.923E 5 

Nonlinear spring model -5.4491E-4 0.282E 4 

acceleration. The calculated pick values of some 

high frequencies are smaller than experimental 

results, it is due to the numerical damping of the 

numerical integration. The twice frequency of the 

rotating speed is due to a misalignment or the 

runout error of a shaft, in general. The frequency 

of 2w does not exist in Fig. 11 (b) because those 

effects are not considered on this study. 

6. Conclusions 

The vibration response due to an unbalance 

force of a rotating shaft supported by ball bear- 

ings is analyzed considering the nonlinear and 

periodically varied stiffness. 

The stiffness of the ball bearing is calculated 

with respect to the nonlinear contact deformation 

and the periodic load distributions on the balls 

and a finite element method is applied for the 

rotor dynamic analysis. The periodically varying 

stiffness is modeled as an external excitation for 

the rotor-bearing system and the orbital motions 

of the bearing and the rotor are integrated directly 

using a o-family algorithm. 
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Fig. 10 Frequency spectrums of the numerical results 
(shaft displacements of the bearing position). 

The calculated results show that the eccentricity 

of the orbit  for the nonl inear  spring model is 

smaller than that for the l inear one and that the 

ampli tude of  the orbit  for the nonl inear  spring 

model is larger than that for the l inear one. 

The frequency spectrum of the calculated orbit  

for the nonl inear  model exhibits the peak values 

at various frequencies including the rotating fre- 

quency co, the excitation frequency nco~ by ball 

passages and the sums and the differences of these 

frequencies. The power spectrum of the bearing 

housing acceleration for test rig shows the peak 

values at all of  these frequencies. 

It can be concluded that the nonl inear  and 

periodic variat ion of the stiffness of a ball  bearing 

would be very useful to investigate and predict the 

harmonic  and superharmonic  responses of the 

rotor supported by ball bearings, even though the 

ampli tude of the variat ion is small enough. 
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